RGB-COMPOSITE CONVERTER

Got RGB? Need composite? Dan Ogilvie has this neat solution for you — and it's far from discrete.

ntil fairly recently a discrete solution to colour encoding had to be used. Perhaps the most popular circuits used the LM1886. This National Semiconductor IC accepts a 3-bit digital code for each of the R, G and B inputs which limits the number of available colours to 512 (2 [3x3]), although this is usually adequate. Some support chips are required; for example the half line frequency generator (7.8kHz) for the 90° PAL phase shifting.

Our design uses a Motorola IC, the MC1377P, accepts true analogue or digital inputs for encoding and provides a direct composite video output. It's a circuit taken more-or-less directly from the applications notes published by Motorola and may be useful for owners of QL, Spectrum+2, Commodore 128 and other computers with RGB but no composite output. Composite monitors are generally cheaper and easier to come by.

The IC

The 20-pin MC1377P (see Fig. 1) contains all that is necessary to perform good quality colour encoding to either PAL or NTSC standards (Fig. 2). The incoming RGB inputs are AC coupled into pins 3, 4 and 5 (Fig. 3). Each input requires 1V peak-to-peak to achieve colour saturation and gives an output with a luminance bandwidth of 8MHz, comfortably exceeding the broadcast, TV standards.

The inputs are fed to the colour difference and luminance matrix which generates the luminance (brightness-Y) and the colour difference signals — (R-Y) and (B-Y) — according to the colour equation Y=0.3R+0.59B+0.11G.

The matrix outputs are clamped to the back porch

(reference black) by sync driven clamp. The IC requires a negative going composite sync input. This must contain the correctly serrated sync pulses within the field pulse for proper operation of the internal PAL flip-flop (which generates the half line frequency). The sync input can be driven directly from TTL or CMOS. The IC also generates the burst gate pulse from the sync input.

The colour burst is obtained from a Colpitts oscillator on pins 17 and 18. Alternatively a burst may be lightly coupled in to lock the oscillator or it may be displayed completely and driven from an external source.

The oscillator output provides

the reference to the B-Y modulator and is also fed to a voltage controlled 90° phase shifter which provides the reference for the R-Y modulator. By allowing the 90° phase shifter to be voltage controlled, fine tuning of the phase shift may be achieved by a pot on pin 19. Without this, the phase shift is guaranteed at ± 3°. This phase shift affects the hues of the picture.

The output of the R-Y modulator is fed to a 180° phase shifter which is switched in and out at the half line frequency. This is fed, together with the B-Y

	100		Unit						
PATINGS	Symbol	Value	Vdc						
KIMUM RATINGS	+ vcc_	15	mAdc						
	IREG	10	°C						
pply Voltage	TAMB	0 to -70	C						
Vdc Regulator Out	Tstg	-65 to -150	C						\
parating Temperature	TJ(max	150	· W						
Temperature	PD	1.25	mW C	١					
Junction Temperature									
Power Dissipation, package	TUDITION	is	Vdc						
Derate above 25	CONDITIO	12 = 2	Vdc						
RECOMMENDED OF ETHE		-0.5 to -1.0	4	1					
Supply Voltage	Derate above 25°C ECOMMENDED OPERATING CONDITIONS 12 -0.5 Supply Voltage +1.7		Vo-p				se Note	d.)	
Sunc Tip Level		1.0	- 1 OI E	qure 1 L	Jnless	Otherw	Max	U	nit
Sync, Blanking Level		12 Vdc. TA = 25	C, Circuit Of F	Min		Түр	IVIAN	m	Ade
Red, Green, Blue Inputs	ISTICS IVCC	= 12 430/1/2	Pin No	+=		32	_	VI	0-0
Supply Voltage Sync Tip Level Sync, Blanking Level Red, Green, Blue Inputs (Saturated) RELECTRICAL CHARACTERISTICS (VCC = 12 Vdc. Characteristic			14	+=		0.5		TV	RMS
Charac			17	+=		0.25		+	kn
Supply Current			18	+-		5.0	_	1_	pF
Oscillator Amplitude Oscillator Components Removed) External Subcarrier Input (Oscillator Components Removed)			18	1 =	-	2.0	95	MALE TO SERVICE STREET	Degrees
Oscillator Subcarrier Input (Oscilla	NO.		1	1	35	90	+-		Deg HA
Subcarrier Input: Resistance Capacitance			19	-	-	0.25	1.0	5	V(p-p)
Subcarrier Input: Capacitance				1	.95	1.0	+		kΩ
Modulation Angle (R-Y) to (B-Y)			3.4.5		-	10 2.0		1	DF V
(R-Y) Angle Adjustment R. G. B Input For 100% Color S Resistance	aturation		3. 4. 5		_	1 1.7	-	-	
1 house - 1 10 pc)1 1			1 2		_	10	1		kΩ
R, G, B Input: Resistance Capacitance		1 2		_	+10	STREET, STREET,		V(p-p)	
e: nure	le)		17		_			80	0
Sync Threshold (See Figure 2e) Sync Threshold (See Figure 2e) 1.7 V)			-	MATERIAL PROPERTY OF THE PARTY	_	10	7	-	V(p-p)
Sync Threshold (See Figure > 1.7 V) Sync Input Resistance (Input > 1.7 V) Sync Input Resistance (Input > 1.7 V)				0	_=		0	- 1	kΩ pF
Chroma Output Ed				10	-		0.0		V(p-p)
Chroma Output Resistance Chroma Input Level For 100% Saturation Chroma Input Level Resistance					1-		0.6	-	(p-p)
				9	1:	-	1.4	_	
Chroma Input: Resistance Capacitan	C8				1	-	1.7	_	10
	Sync Lumina	nce			1	=+	-	100	MHz
Composite Output,	Chrom	8		9	1	-+	90	-	1
Composite 100% Saturation 100% Saturation Burst			9		=+		40	mV(p-	
(See Figure 20)	100% Saturation (See Figure 2d) Output Impedance (See Note 1) Luminance Bandwidth (3 dB), Less Delay Line Luminance Bandwidth (3 dB), Less Delay Line Subcarrier Leakage In Output Subcarrier Leakage In Output Note 1: Output Impedance can be reduced to less than 100 by us to about 60 mA.			9		-1	4 Powe	supply	current will inch
Output Impedance (See	3 dB), Less Dela	y Line		s load fro	m Pin	g to groun	id. Forse		
Luminance Bandwidth	Output	then 100 by us	ing a 150st outpu	, 1002					
Subcarrier Leakage In C	can be reduced t	o less than ton							
Note 1: Output Impedance						.auth			
Note 1: Output Import 60 mA.								W	

Fig. 1 MC1377P data (Courtesy Motorola).

Fig. 2 Block diagram of the MC1377P encoder IC.

Fig. 3 Crcuit diagram of the converter.

Fig. 4 The signals that should appear at the test points around the chip.

HOW IT WORKS

The incoming RGB inputs are terminated with resistors R1, R2 and R3 and potentiometers RV1, RV2 and RV3 (Fig. 3). These provide input impedances of approximately 75R. The presets should be adjusted to provide a maximum input of 1V p-p (for saturation) into the MC1377. If the inputs to the board cannot drive 75R (LSTTL, for example, can only provide a source current of 400µA) the 82R resistors should be removed and the pots replaced with 10k values. This will decrease the bandwidth of the system due to the filter formed by the potentiometer and the input capacitance of the MC1377. The inputs are AC coupled into the encoder — the large value of capacitor being required for the 50Hz field component.

The Colpitts oscillator for the colour burst is formed around pins 17 and 18. About 0.5V p-p should appear on pin 17 and 0.25 VRMS into pin 18 with the oscillator components removed.

The incoming composite sync signal (pin 2) should be negative going. The device will accept CMOS and TTL directly. The range of acceptable inputs is shown in Fig. 4. If it is necessary to AC couple the sync then a pull up to 8.2V is required (a regulated 8.2V is provided on pin 16).

From the composite sync input the MC1377 generates a ramp which it uses to provide the burst gate pulse. The slope of this ramp can be varied by a potentiometer on pin 1. However a

preset value is usually sufficient (shown as 43k).

The chrominance filter should be fitted between pins 13 and 10. If the filter is not used, a compensatory potential divider should be fitted (both are shown in Fig. 3). We used a prealigned Toko bandpass filter centred on 4.43MHz. If the chroma filter is fitted, the delay through it (400ns) has to be compensated for by a luminance delay line between pins 6 and 8. This is shorted out if the filter is not fitted. The composite video output from the IC is buffered to provide a low impedance drive for a monitor or it can be applied directly to one of the common UHF modulators used in computers. Just follow the manufacturer's instructions for connecting this up.

PROJECT: RGB-Composite

modulator output to the chroma amplifier which drives the chroma bandpass filter if required. The output of the filter is fed together with the composite sync signal and a delayed version of the luminance signal to the output amplifier. The delay line in the luminance path compensates for the delay through the chroma filter.

It is possible to link out the chroma bandpass filter in which case the delay compensation is no longer required either. However the chip expects a 3dB loss through the filter and a resistor

divider must be used instead to produce this.

Construction

With some care, no problems should be experienced. The circuit draws about 40mA from a 12V supply. The input potentiometers (RV1, RV2, RV3) should be set to provide 1V inputs from the source. If a scope is not available, they can be set up by viewing the picture on a monitor and obtaining good saturation of each of the inputs in turn. If necessary a small adjustment may be made to the R-Y

phase delay. R8 can be replaced with a 50k pot and again adjustment made to set the correct hues on a monitor. A colour signal will be useful here, perhaps your computer can be programmed to generate one.

Should only 0.7V video outputs be available these must be amplified before applying them to the IC. A LM318N fast op-amp can be used (no compensation required) to provide the required gain at the bandwidth necessary. Take care to decouple close to the op-amp.

PARTS LIST.

RESISTORS (A	II %W ±5%)	C7, 8	22n					
R1, 2, 3	82R	C7, 8	220p polystyrene					
R4	1k0 (2k2 without	C9, 12	10n					
	filter)	C10, 11, 13, 16	100n					
R5	10k (only fitted	C14, 15	1n0 3-30p					
	when filter isn't)	CV1						
R6, 7, 10	1k0							
R8	43k	SEMICONDUCTORS						
R9	470R	IC1	MC1377P					
R11	75R	Q1	2n2369A					
RV1, 2, 3	1k0							
		MISCELLANEOUS						
	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	Chroma filter - Toko VUS1054; 400ns delay line. 3-pin 1" 1" x 4" (HLW);						
CAPACITORS								
C1, 2, 3	22μ 16V radial	XTAL1 — colour burst frequency.						
	electrolytic		C18U can; PCB; suit-					
C4, 5, 6	22n	able connector.						

BUYLINES

The MC1377P is available from Macro-Marketing (telephone: 06286-4422). The Toko filter and variable capacitor are available from Cirkit, order numbers 18-01054 and 06-36001 respectively The delay line — a TDK T9006 has been recommended — may prove more problematic and we suggest trying TV repair shops for a second-hand luminance delay line from a colour TV chassis — Fergusson TX9 or TX10, for example. Manor Supplies of West End Lane, London NW11 (01 794 8751) may be able to help. The 43k resistor may be obtained from Electromail or a 50k preset will do - or use a 33k and a 10k resistor in series.

ETI